
DS3 VERSION B

ECG2 MATHS APPLIQUÉES

On s'intéresse dans ce problème aux processus de Markov �nis homogènes à temps continu et on étudie
deux exemples de modélisation en lien avec les crédits bancaires.

Le problème comporte quatre parties. Les parties 2 et 3 sont indépendantes de la partie 4.
Soit n ∈ N∗, n > 2. On considère, dans la suite du problème, une famille de variables aléatoires Xt, pour

t ∈ R+, sur un espace probabilisé ( Ω,A,P ), véri�ant les propriétés suivantes :
(H1) Pour tout t > 0, Xt(Ω) = {1, . . . , n}.
(H2) Pour tout r ∈ N∗ et t1 < t2 < · · · < tr des réels positifs, i1, . . . , ir+1 des éléments de {1, . . . , n} et s

un réel positif, si P ([Xt1 = i1] ∩ · · · ∩ [Xtr = ir]) 6= 0,

P[Xt1=i1]∩···∩[Xtr=ir]
([Xtr+s = ir+1]) = P[Xtr=ir]

([Xtr+s = ir+1])

(H3) Pour tout i ∈ {1, . . . , n}, la fonction fi : t 7→ P ([Xt = i]) est dé�nie, dérivable sur R+ et n'est pas la
fonction nulle. On note Si l'ensemble des réels positifs t tels que fi(t) 6= 0.

(H4) Pour tout (i, j) ∈ {1, . . . , n}2, i 6= j et h > 0, la fonction t 7→ P[Xt=i] ([Xt+h = j]) est constante sur
son ensemble de dé�nition Si et il existe un réel positif que l'on note αi,j , tel que, si t ∈ Si et h ∈ R+,

P[Xt=i] ([Xt+h = j]) = αi,jh+ o
h→0

(h)

(H5) Pour tout i ∈ {1, . . . , n} et h > 0, la fonction t 7→ P[Xt=i] ([Xt+h = i]) est constante sur son ensemble
de dé�nition Si et il existe un réel négatif que l'on note αi,i, tel que, si t ∈ Si et h ∈ R+,

P[Xt=i] ([Xt+h = i]) = 1 + αi,ih+ o
h→0

(h)

Partie 1 - Matrice génératrice et système différentiel associés

On note Lt la matrice ligne d'ordre n, (P ([Xt = 1]) . . . P ([Xt = n])) = (f1(t) . . . fn(t)) et on note
G la matrice carrée d'ordre n dont les coe�cients sont les αi,j , appelée matrice génératrice du processus.

On note aussi pour tout t ∈ R+, L′t = ( f ′1(t) . . . f ′n(t) ).
L'objectif des trois premières questions est d'établir que pour tout t > 0, L′t = LtG.

1. Montrer que, pour tous j ∈ {1, . . . , n} et (t, h) ∈ (R+)
2,

P ([Xt+h = j]) =
n∑
i=1

P ([Xt+h = j] ∩ [Xt = i])

2. Soit i ∈ {1, . . . , n}, t ∈ Si et h ∈ R+, justi�er que
n∑
j=1

P[Xt=i] ([Xt+h = j]) = 1. En déduire que, pour

tout i ∈ {1, . . . , n} et h ∈ R+, on a l'égalité :

1 = 1 +

 n∑
j=1

αi,j

h+ o
h→0

(h)

En conclure que
n∑
j=1

αi,j = 0.

1
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3. a. Montrer que, pour tous j ∈ {1, . . . , n} et (t, h) ∈ (R+)
2, on a alors :

P ([Xt+h = j]) = P ([Xt = j]) +
n∑
i=1

(
αi,jh+ o

h→0
(h)

)
P ([Xt = i])

b. En déduire que pour tous j ∈ {1, . . . , n}, t > 0 et h > 0 :

fj(t+ h)− fj(t)
h

=
n∑
i=1

fi(t)αi,j + o
h→0

(1)

En conclure que f ′j(t) =
n∑
i=1

fi(t)αi,j .

c. Véri�er L′t = LtG.

4. Probabilité moyenne d'être dans un état. 1

Soit T > 0 et UT une variable aléatoire à valeurs dans [0, T ] qui suit la loi uniforme sur cet intervalle.
On pose Zi,T = fi (UT ).

Montrer que E (Zi,T ) existe et vaut 1
T

∫ T
0 fi(t)dt. On note ei(T ) cette espérance.

5. On suppose dans cette question que n = 2 et que G =

(
−a a
b −b

)
où a et b sont deux réels

strictement positifs. On pose p = b
a+b , q = 1− p, α = f1(0).

a. Montrer que f1 véri�e l'équation di�érentielle d'ordre 1 sur R+, y′ + (a+ b)y = b.

b. En conclure que pour tout t > 0,

f1(t) = p+ (α− p) exp(−(a+ b)t) et f2(t) = q − (α− p) exp(−(a+ b)t)

c. Montrer que pour tout t ∈ R+, f1(t) ∈ [min(p, α),max(p, α)] et que lim
t→+∞

f1(t) = p.

d. Déterminer lim
T→+∞

e1(T ).

6. On suppose dans cette question que n = 3 et G = 1
30

 −3 1 2
1 −2 1
2 1 −3

. Pour tout t > 0, on note Ct

(respectivement C ′t ) la transposée de la matrice ligne Lt (respectivement L′t ).

a. Montrer que −1
6 ,−

1
10 et 0 sont des valeurs propres de G.

b. On pose P =

 1 1 1
1 −2 0
1 1 −1

. Justi�er que G = 1
30P

 0 0 0
0 −3 0
0 0 −5

P−1.

c. Calculer tPP . En déduire que P−1 = 1
6

 2 2 2
1 −2 1
3 0 −3

.

d. On pose, pour tout t ∈ R+, P−1Ct =

 y1(t)
y2(t)
y3(t)

.

Montrer que pour tout t ∈ R+, y′1(t) = 0, y′2(t) = − 1
10y2(t), y

′
3(t) = −1

6y3(t).

e. En conclure que, pour tout t > 0, Ct = P

 α

βe−
1
10
t

γe−
1
6
t

 où

 α
β
γ

 = P−1C0, puis que pour

i ∈ {1, 2, 3}, lim
t→+∞

P ([Xt = i]) = 1
3 .

1. Cette question est réservée aux cubes. Les carrés peuvent admettre le résultat.
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7. Temps initial passé dans un état.

Les carrés doivent faire attention aux notes de bas de page.

On pose pour tout i ∈ {1, . . . , n}, βi = −αi,i et on suppose dans cette question que, si P ([X0 = i]) 6=
0, alors βi 6= 0.

On dé�nit les variables aléatoires, Y1, . . . , Yn et Y égales, au premier instant t où Xt 6= i pour Yi et
au premier instant t où Xt 6= X0 pour Y . On admet que ces instants existent. Ainsi Y est à valeurs
dans ]0,+∞[ et si X0 6= i, Yi = 0.

Soit i tel que P ([X0 = i]) 6= 0. On admet que pour tout x > 0, lorsque k est un entier naturel assez

grand P
(⋂k

j=0

[
X j

k
x = i

])
6= 0 et que l'on a :

P ([Yi > x]) = lim
k→+∞

P

 k⋂
j=0

[
X j

k
x = i

]
a. Montrer que pour tout x > 0 et k ∈ N∗, k assez grand :

P

 k⋂
j=0

[
X j

k
x = i

] = P ([X0 = i])
k−1∏
j=0

P[
X j

k
x
=i

] ([X j+1
k
x = i

])
= P ([X0 = i])

(
1− βi

k
x+ o

k→+∞

(
1

k

))k
b. En déduire que pour tout x > 0,P[X0=i] ([Yi > x]) = e−βix. Quelle est la loi de Yi pour la proba-

bilité conditionnelle P[X0=i] ?
2

c. Montrer que pour tout x > 0,P([Y > x]) =
n∑
k=1

P ([X0 = k]) e−βkx.

d. En conclure que Y est une variable à densité et déterminer une densité de Y . 3

e. On note I = {k ∈ {1, . . . , n} | P ([X0 = k]) 6= 0}. Établir que Y admet une espérance égale à∑
k∈I

P([X0=k])
βk

. 4

Partie 2 - Matrice de transition, lien avec la matrice génératrice

On utilise les notations de la partie 1 .

8. Dé�nition de la matrice de transition

Pour tous (i, j) ∈ {1, . . . , n}2 et s > 0, si t ∈ Si, on pose

mi,j(s) = P[Xt=i] ([Xt+s = j])

qui ne dépend pas de t d'après les hypothèses (H4) et (H5).

On note M(s) la matrice d'élément générique mi,j(s).

a. Établir que pour tout s > 0, Ls = L0M(s).

2. Les carrés doivent ignorer la deuxième partie de la question, il s'agit d'une loi à densités.
3. Les carrés doivent simplement calculer la dérivée de la fonction de répartition de Y dé�nie, comme pour toutes les variables

aléatoires, par
FY (x) = P ([Y 6 x]) = 1− P ([Y > x]) .

Cette dérivée est notée fY .
4. Les carrés doivent utiliser sans preuve le fait que l'espérance de Y se calcule sous réserve d'existence par

E(Y ) =

∫ +∞

0

xfY (x)dx.
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b. Soit i ∈ {1, . . . , n}, r ∈ Si. En utilisant la propriété (H2) et en distinguant les cas où

P ([Xr = i]∩ [Xr+s = k])

est nulle ou non, montrer que pour tous (j, k) ∈ {1, . . . , n}2, s et t des réels positifs :

P ([Xr = i] ∩ [Xr+s = k] ∩ [Xr+s+t = j]) = P ([Xr = i])mi,k(s)mk,j(t)

En déduire que, pour tous j ∈ {1, . . . , n} et s, t des réels positifs,

P ([Xr = i] ∩ [Xr+s+t = j]) = P ([Xr = i])

n∑
k=1

mi,k(s)mk,j(t)

c. En conclure que pour tous s et t, des réels positifs, M(s+ t) = M(s)M(t).

d. Montrer que pour tout k ∈ N∗ et t réel positif, M(kt) = (M(t))k.

� Si (Ak)k>1 est une suite de matrices appartenant à Mn(R), A une matrice appartenant à Mn(R), si
l'on note ai,j(k) le coe�cient d'indice (i, j) de la matrice Ak, ai,j le coe�cient d'indice (i, j) de A,
alors on écrira A = lim

k→+∞
Ak si pour (i, j) ∈ {1, . . . , n}2, lim

k→+∞
ai,j(k) = ai,j .

On dit alors que la suite (Ak)k>1 converge vers A.

� On admet, dans la suite de cette partie et dans la partie 3 , que pour tout t > 0,

M(t) = lim
k→+∞

(
In +

t

k
G

)k
(∗∗)

9. On veut simuler le processus à partir de la donnée de la matrice G et de L0. On admet que pour
t ∈ [0, 100], on peut considérer que M(t) =

(
In + t

1000G
)1000

.

� On importe des bibliothèques :

1 import numpy as np

2 import numpy.random as rd

3 import matplotlib.pyplot as plt

4 import numpy.linalg as al

� On rappelle que siM est une matrice, représentée par un tableau numpy, M[ :,j] désigne le vecteur
des coe�cients de la j-ème colonne de M , de même pour M[i, :] et la i-ème ligne de M .

a. Écrire une fonction Python transition(t, G) de paramètres G représentant la matrice génératrice
carrée d'ordre n et t, qui renvoie la matrice

(
In + t

1000G
)1000

.

b. Utiliser la fonction précédente pour écrire une fonction traceLoi2Xt(G,L0, tmax) qui trace, sur un
même graphique, les graphes des fonctions t 7→ P ([Xt = i]) sur le segment [0, tmax ] pour i variant
de 1 à n,G et L0 représentant, respectivement, la matrice génératrice du processus et la ligne L0.

On utilisera 1000 points pour les graphes.

c. Si G est la matrice de la partie I, question 6, l'instruction

1 traceLoi2Xt (1/30* np.array ([[-3,1,2],[1,-2,1],[2,1,-3]]) ,1/10*np.array ([5,3,2]) ,100)

a�che l'image suivante :
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Expliquer en quoi ce graphique est cohérent avec un résultat obtenu précédemment.

d. On veut simuler et représenter, sur un même graphique, les valeurs de X0, Xt, . . . , Xkt, pour t > 0
et k ∈ N∗, à partir de la loi de X0 donnée dans une ligne L0. Compléter la fonction suivante pour
qu'elle réalise cette tâche :

1 def simulX(t,k,LO ,G):

2 listeDesT =[] ; listeDesX =[]

3 Mt=transition(t,G) ; Lt = L0

4 for i in range(k+1):

5 listeDesT.append(i*t)

6 p=rd.random ()

7 s=...

8 j=0

9 while p >...:

10 j+=1

11 s+=Lt[j]

12 Lt=...

13 listeDesX.append(j+1)

14 plt.plot(listeDesT ,listeDesX) ; plt.show()

Partie 3 - Deux exemples de modélisations

On conserve les notations des deux premières parties.

10. On considère trois états pour le recouvrement d'un crédit bancaire après un défaut de paiement et un
accord entre le débiteur et l'organisme de crédit sur la somme à recouvrer :

� 1 - en cours de recouvrement, lorsque le débiteur est en train de régulariser sa créance ;

� 2 - recouvré, lorsque le débiteur a honoré la totalité du montant dû ;

� 3 - non recouvré, lorsque l'organisme de crédit considère que l'argent est dé�nitivement perdu.

La matrice génératriceG du processus de Markov modélisant ce phénomène est

 −α− β α β
0 0 0
0 0 0


et L0 =

(
1 0 0

)
, α et β étant des réels strictement positifs.

a. Montrer que pour tout i ∈ N∗, Gi = (−α− β)i−1G.
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b. En déduire que pour tous k ∈ N∗ et t réel :
(
I3 + t

kG
)k

= I3 +

(
k∑
i=1

(
k
i

) (
t
k

)i
(−α− β)i−1

)
G.

c. Montrer que pour tous k ∈ N∗ et t réel,
n∑
i=1

(
k
i

) (
t
k

)i
(−α − β)i−1 =

1−(1−(α+β) t
k )

k

α+β et en déduire

que pour tout t > 0,

M(t) = I3 +
1− exp(−(α+ β)t)

α+ β
G

d. En conclure que pour tout t > 0,P ([Xt = 1]) = exp(−(α+β)t), P ([Xt = 2]) = α
α+β (1−exp(−(α+

β)t)) et P ([Xt = 3]) = β
α+β (1− exp(−(α+ β)t))

e. En utilisant les résultats de la question 7. de la partie 1, montrer que le temps aléatoire passé en
recouvrement suit la loi exponentielle de paramètre α+ β. 5

11. On distingue, pour l'accès au crédit d'une organisation, trois niveaux de solvabilité :

� 1 - niveau C ;

� 2 - niveau B ;

� 3 - niveau A.

On suppose que ce niveau évolue dans le temps suivant un processus de Markov avec

G = 1
3

 −α α 0
0 −α α

4α 0 −4α

 et L0 =
(

1 0 0
)
, α > 0. On note aussi A = 1

3

 1 −1 0
0 1 −1
−4 0 4


a. On admet que A3 = 1

27

 −3 −3 6
24 −3 −21
−84 24 60

. Calculer A3 − 2A2 + A (on explicitera A2). Que

peut-on dire du polynôme U(x) = x3 − 2x2 + x ?
Soit θ ∈ R et k ∈ N∗, on admet qu'il existe un polynôme Q et des réels a, b, c tels que, pour tout

x réel :
(
1 + θ

kx
)k

= Q(x)U(x) + ax2 + bx+ c (∗).

b. Déterminer une factorisation de U(x) et en déduire que c = 1 et
(
1 + θ

k

)k
= a+ b+ c.

c. En dérivant la relation (*), montrer que, θ
(
1 + θ

k

)k−1
= 2a+ b.

En déduire que a = θ
(
1 + θ

k

)k−1 − (1 + θ
k

)k
+ 1 et b = 2

(
1 + θ

k

)k − θ (1 + θ
k

)k−1 − 2.

d. En conclure que pour tout t > 0,

M(t) =
(
1− (1 + αt)e−αt

)
A2 +

(
(2 + αt)e−αt − 2

)
A+ I3

puis préciser la loi de Xt.

Partie 4 - Démonstration de l'égalité (**) admise dans la partie 2

On utilise les notations et dé�nitions des deux premières parties.

� On dé�nit pour A = (ai,j)16i,j6n appartenant à Mn(R),

‖A‖ = max
16i6n

 n∑
j=1

|ai,j |


c'est-à-dire la plus grande valeur que prend

n∑
j=1
|ai,j | lorsque i décrit {1, . . . , n}.

5. Les carrés peuvent ignorer cette question.
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� On admet que si (Ak)k>1 est une suite de matrices appartenant à Mn(R) et A appartenant aussi à
Mn(R), A = lim

k→+∞
Ak si et seulement si lim

k→+∞
‖Ak −A‖ = 0.

12. Un exemple - Si A = 1
3

 1 −1 1
0 1 −1
−4 0 2

, montrer que ‖A‖ = 2.

13. Soit t > 0.

a. Établir ‖M(t)‖ = 1.

b. En utilisant la question 2. de la partie I, montrer que pour k ∈ N∗ assez grand,
∥∥In + t

kG
∥∥ = 1.

14. Soient A = (ai,j)16i,j6n et B = (bi,j)16i,j6n deux matrices appartenant à Mn(R).

a. Établir que ‖A+B‖ 6 ‖A‖+ ‖B‖.
b. Montrer que ‖A‖ 6

∑n
i=1

∑n
j=1 |ai,j |.

c. Démontrer que, ‖AB‖ 6 ‖A‖‖B‖ puis que pour tout entier naturel n, ‖An‖ 6 ‖A‖n.
d. Véri�er que pour tout k ∈ N∗, Ak+1 −Bk+1 = A

(
Ak −Bk

)
+ (A−B)Bk.

e. On pose c = max(‖A‖, ‖B‖). Montrer, par récurrence sur k, que pour tout k ∈ N∗,∥∥∥Ak −Bk
∥∥∥ 6 kck−1‖A−B‖

15. Soit t un réel positif et k ∈ N∗.
a. Justi�er que

∥∥M (
t
k

)
−
(
In + t

kG
)∥∥ = o

k→+∞

(
1
k

)
.

b. Montrer que pour tout k assez grand,∥∥∥∥∥M
(
t

k

)k
−
(
In +

t

k
G

)k∥∥∥∥∥ 6 k

∥∥∥∥M (
t

k

)
−
(
In +

t

k
G

)∥∥∥∥
c. En conclure que M(t) = limk→+∞

(
In + t

kG
)k
.


	Partie 1 - Matrice génératrice et système différentiel associés
	Partie 2 - Matrice de transition, lien avec la matrice génératrice
	Partie 3 - Deux exemples de modélisations
	Partie 4 - Démonstration de l'égalité (**) admise dans la partie 2

