DS3 VERSION B

ECG2 MATHS APPLIQUEES

On g’intéresse dans ce probléme aux processus de Markov finis homogénes & temps continu et on étudie
deux exemples de modélisation en lien avec les crédits bancaires.

Le probléme comporte quatre parties. Les parties 2 et 3 sont indépendantes de la partie 4.

Soit n € N*, n > 2. On considére, dans la suite du probléme, une famille de variables aléatoires X;, pour
t € RT, sur un espace probabilisé ( 2, A, P ), vérifiant les propriétés suivantes :

(Hy) Pour tout t > 0, X,(2) ={1,...,n}.

(Hs) Pour tout r € N* et t1 < to < --- < t, des réels positifs, i1,...,i,41 des éléments de {1,...,n} et s
un réel positif, si P ([ Xy, =] N---N[Xe, =14,]) #0,

Prx,, =n]n-nixe, =i] (Kters = ir1]) = Prx, =iy (X4 = 601])

(Hs) Pour tout i € {1,...,n}, la fonction f; : t — P ([X; = 7]) est définie, dérivable sur RT et n’est pas la
fonction nulle. On note S; 'ensemble des réels positifs ¢ tels que f;(t) # 0.

(Hy) Pour tout (i,7) € {1,...,n}%i # j et h > 0, la fonction ¢ — Prx,—; ([Xeqn = j]) est constante sur
son ensemble de définition S; et il existe un réel positif que 'on note «; ;, tel que, si ¢t € S; et h € RT,

Prx,—i) ((Xern = j]) = cijh + hgo(h)

(Hs) Pour tout 7 € {1,...,n} et h > 0, la fonction ¢ — Px,—;) ([X¢4s = 7]) est constante sur son ensemble
de définition S; et il existe un réel négatif que Uon note a4, tel que, si t € S; et h € R,

P[XtZﬂ ([Xt+h = l]) =1+ Ozm'h + hO (h)

—0

PARTIE 1 - MATRICE GENERATRICE ET SYSTEME DIFFERENTIEL ASSOCIES

On note L; la matrice ligne d’ordre n, (P([X; =1]) ... P([Xy=mn]) = (fi(t) ... [fo(t)) et on note
G la matrice carrée d’ordre n dont les coefficients sont les «; ;, appelée matrice génératrice du processus.
On note aussi pour tout t € RY, L, = ( fi(t) ... [fL(t)).

L’objectif des trois premiéres questions est d’établir que pour tout ¢t > 0, L; = L;G.

1. Montrer que, pour tous j € {1,...,n} et (t,h) € (RT)?,

P([(Xepn = 41) = D P ([Xern = 410 [X; =)
=1

n
2. Soit i € {1,...,n},t € S; et h € RT, justifier que > Pix,—;) ([X¢xn = j]) = 1. En déduire que, pour
,1 [X¢=i] +
=

tout i € {1,...,n} et h € RT, on a légalité :

n
1=1+ Zam h+ o (h)
7=1
n
En conclure que ) a;; =0.
j=1



DS3 VERSION B 2

3. a. Montrer que, pour tous j € {1,...,n} et (¢t,h) € (R+)2, on a alors :

P ([Xern = J]) = +Z <amh+ o <h>) P (X, =)

b. En déduire que pour tous j € {1,...,n},t > 0 et h>0:

fi®aig + o (1)

En conclure que f]’-(t) = filt)au.
i=1

c. Veérifier L) = L;G.
4. Probabilité moyenne d’étre dans un état.'
Soit T' > 0 et Uz une variable aléatoire a valeurs dans [0, 7] qui suit la loi uniforme sur cet intervalle.
On pose Z; 7 = f; (Ur).
Montrer que E (Z; 1) existe et vaut + fOT fi(t)dt. On note e;(T") cette espérance.

5. On suppose dans cette question que n = 2 et que G = < —ba _ab ) oll a et b sont deux réels

strictement positifs. On pose p = %b,q =1—p,a= f1(0).
a. Montrer que f; vérifie équation différentielle d’ordre 1 sur R*, 3’ + (a + b)y = b.

b. En conclure que pour tout ¢ > 0,

filt)=p+(a—p)exp(—(a+b)t) et [fo(t)=q— (a—p)exp(—(a+ b))
c. Montrer que pour tout ¢ € R, f1(¢) € [min(p, a), max(p, )] et que tlgrn fi(t) =p.
d. Déterminer lim ey (7).
T—+o00

6. On suppose dans cette question que n = 3 et G = 30 1 -2 1 . Pour tout ¢t > 0, on note C}
1 -3
(respectivement Cj ) la transposée de la matrice ligne L; (respectivement Lj ).

a. Montrer que —%, —%0 et 0 sont des valeurs propres de G.
1 1 1 0 0 O
b. Onpose P=| 1 -2 0 |. JustifierqueG=4P| 0 -3 0 |P7L
1 1 -1 0 0 -5
2 2 2
c. Calculer ‘PP. En déduire que P71 =3 | 1 —2 1
3 -3
yi(?)
d. On pose, pour tout t € RT, P71Cy = | ya(t)
y3(t)
Montrer que pour tout ¢t € RT, 44 (t) = 0,95(t) = 10yg(t),yg(t) = —%yg(t).
«a «
e. En conclure que, pour tout t > 0,Cy = P Be_% ol I} = Py, puis que pour
Ly
ye~ 6 Y

i€{1,2,3}, lim P([X;=i])=

t——+o00

Wl

1. Cette question est réservée aux cubes. Les carrés peuvent admettre le résultat.
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7. Temps initial passé dans un état.

Les carrés dotvent faire attention auz notes de bas de page.

On pose pour tout ¢ € {1,...,n}, 5; = —a;,; et on suppose dans cette question que, si P ([Xo = i) #
0, alors ; # 0.

On définit les variables aléatoires, Y7,...,Y, et Y égales, au premier instant ¢ ot Xy # i pour Y; et
au premier instant ¢ ol X; # Xp pour Y. On admet que ces instants existent. Ainsi Y est a valeurs
dans ]0, +oo[ et si Xo #14,Y; = 0.

Soit i tel que P ([Xo = i]) # 0. On admet que pour tout = > 0, lorsque k est un entier naturel assez
grand P (ﬂj}:o {X%x = ZD #0 et que l'on a :

k

(i # ([
j=0

a. Montrer que pour tout x > 0 et k € N* k assez grand :

P ﬂ[ L } ([Xo = 1)) li[ x }({Xm :iD:IP’([XOZZ'])(1—%x+k_>o+oo(;>>k

J=0 feo

E”

b. En déduire que pour tout z > 0, Py —; ([Yi > z]) = e A% Quelle est la loi de Y; pour la proba-
bilité conditionnelle Py, _; 7 2

n
c. Montrer que pour tout 2 > 0,P([Y > 2]) = 3. P([Xo = k]) e 2.
k=1

d. En conclure que Y est une variable a densité et déterminer une densité de V.3

e. On note I = {ke{l,...,n} | P([Xo = k]) # 0}. Etablir que Y admet une espérance égale &
D P([Xo=k]) 4
e

PARTIE 2 - MATRICE DE TRANSITION, LIEN AVEC LA MATRICE GENERATRICE

On utilise les notations de la partie 1 .

8. Définition de la matrice de transition
Pour tous (i,7) € {1,...,n}? et s > 0, si t € S;, on pose

mi j(s) = Prx,—y) ([Xets = 1)
qui ne dépend pas de t d’apres les hypothéses (Hy) et (Hs).
On note M(s) la matrice d’élément générique m; j(s).

a. Etablir que pour tout s > 0, Ls = LoM(s).

2. Les carrés doivent ignorer la deuxiéme partie de la question, il s’agit d’une loi & densités.
3. Les carrés doivent simplement calculer la dérivée de la fonction de répartition de Y définie, comme pour toutes les variables
aléatoires, par

Fy(z)=P([Y <z])=1-P(Y > x]).
Cette dérivée est notée fy .
4. Les carrés doivent utiliser sans preuve le fait que ’espérance de Y se calcule sous réserve d’existence par

400
E(Y) = /0 zfy (z)dx
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b. Soit i € {1,...,n},r € S;. En utilisant la propriété (Hz) et en distinguant les cas ou
P([X7 =N [Xpqs = K])

est nulle ou non, montrer que pour tous (j,k) € {1,...,n}%, s et t des réels positifs :

P([X; =] N [Xpys = K] N [Xogspe = 7)) = P ([ Xy = i) mip(s)mp,;(t)

En déduire que, pour tous j € {1,...,n} et s,t des réels positifs,

P (X, =] N [Xrpsre = 51) = P((X, = i) Y mig(s)mu;(t)
k=1

c. En conclure que pour tous s et ¢, des réels positifs, M (s +t) = M(s)M(t).
d. Montrer que pour tout k € N* et t réel positif, M (kt) = (M (t))*.

® Si (Ag),> est une suite de matrices appartenant a .#,(R), A une matrice appartenant a .4, (R), si
I'on note a; j(k) le coefficient d’indice (i,7) de la matrice Ay, a;; le coefficient d’indice (7,7) de A,

alors on écrira A = kgrfm Ay, sipour (4,7) € {1,...,n}?, kgrfm a; j(k) = a; ;.

On dit alors que la suite (A),-, converge vers A.

e On admet, dans la suite de cette partie et dans la partie 3 , que pour tout ¢ > 0,

k
M(t) = kll)r_lr_loo <In + ZG) (xx)

9. On veut simuler le processus a partir de la donnée de la matrice G et de Lg. On admet que pour
¢ € 0,100], on peut considérer que M(t) = (I + 1055G) 1000

e On importe des bibliotheques :

numpy as np
numpy .random as rd

matplotlib.pyplot as plt
numpy .linalg as al

e On rappelle que si M est une matrice, représentée par un tableau numpy, M[ :,j] désigne le vecteur
des coefficients de la j-éme colonne de M , de méme pour M[i, :] et la i-éme ligne de M.

a. Ecrire une fonction Python transition(t, G) de paramétres G représentant la matrice génératrice
) . . . 1000
carrée d’ordre n et t, qui renvoie la matrice (In + ﬁG) .

b. Utiliser la fonction précédente pour écrire une fonction tracelLoi2Xt(G,L0, tmax) qui trace, sur un
méme graphique, les graphes des fonctions t — P ([X; = i]) sur le segment [0, tmax | pour ¢ variant
de 1 & n, G et LO représentant, respectivement, la matrice génératrice du processus et la ligne Ly.

On utilisera 1000 points pour les graphes.

c. Si GG est la matrice de la partie I, question 6, I'instruction

|
l traceLoi2Xt (1/30*np.array([[-3,1,2],[1,-2,1]1,[2,1,-3]1]),1/10*np.array ([5,3,2]) ,100)
|

affiche I'image suivante :
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Expliquer en quoi ce graphique est cohérent avec un résultat obtenu précédemment.

d. On veut simuler et représenter, sur un méme graphique, les valeurs de Xo, X4, ..., Xg:, pourt > 0

et k € N* & partir de la loi de Xy donnée dans une ligne LO. Compléter la fonction suivante pour
qu’elle réalise cette tache :

W def simulX(t,k,L0,G):

2 listeDesT=[] ; listeDesX=[]
3 Mt=transition(t,G) ; Lt = LO
4 for i in range (k+1):

5 listeDesT.append (i*t)

6 p=rd.random()

S=...

8 j=O

9 while p>...:

10 j+=1

11 s+=Lt[j]

12 Lt=...

13 listeDesX.append (j+1)

14 plt.plot(listeDesT,listeDesX) ; plt.show()

PARTIE 3 - DEUX EXEMPLES DE MODELISATIONS

On conserve les notations des deux premiéres parties.

10. On considére trois états pour le recouvrement d’un crédit bancaire apres un défaut de paiement et un
accord entre le débiteur et 'organisme de crédit sur la somme & recouvrer :
e 1 - en cours de recouvrement, lorsque le débiteur est en train de régulariser sa créance;
e 2 - recouvré, lorsque le débiteur a honoré la totalité du montant di;
e 3 - non recouvré, lorsque l'organisme de crédit considére que ’argent est définitivement perdu.

—a—0 a p

La matrice génératrice G du processus de Markov modélisant ce phénoméne est 0 0 0
0 0

0
et Lo = ( 1 00 ), a et B étant des réels strictement positifs.

a. Montrer que pour tout i € N*, G = (—a — 3)"71G.
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() (o=

[N

b. En déduire que pour tous k € N* et ¢ réel : (13 + %G)k =13+ (

=1

; . —(1— Lk
c. Montrer que pour tous k € N* et ¢ réel, > (l:) (%)Z (—a—B)—t = % et en déduire
1

1=

que pour tout t > 0,

1 —exp(—(a+ B)t)
a+p
d. En conclure que pour tout t > 0, ([X; = 1]) = exp(—(a+8)t), P([X¢ = 2]) = ;55(1—exp(—(a+
B)t)) et P([X; = 3]) = 795(1 — exp(—(a + B)t))
e. En utilisant les résultats de la question 7. de la partie 1, montrer que le temps aléatoire passé en
recouvrement suit la loi exponentielle de paramétre a + f3.°

G

M(t)zfg—l-

11. On distingue, pour 'accés au crédit d’une organisation, trois niveaux de solvabilité :

e 1 - niveau C';
e 2 - niveau B;

e 3 - niveau A.

On suppose que ce niveau évolue dans le temps suivant un processus de Markov avec

—a o 0 1 -1 0
G:% 0 —a « etLO:(l 0 0),a>0.0nnoteaussiA:% 0 1 -1
dao 0 —do -4 0 4
-3 -3 6
a. On admet que A3 = 2—17 24 -3 —21 |. Calculer A3 — 242 + A (on explicitera A?). Que
-84 24 60

peut-on dire du polynome U(z) = 23 — 222 + 27
Soit 8 € R et k € N*, on admet qu’il existe un polyndme @ et des réels a, b, ¢ tels que, pour tout
z réel : (1+ %m)k =Q(2)U(x) + ax® + bz +c (x).
b. Déterminer une factorisation de U(z) et en déduire que ¢ =1 et (1 + %)k =a+b+ec
c. En dérivant la relation (*), montrer que, 6 (1 + %)k_l = 2a + b.
En deduire quea =0 (1+ ) ' = (1+ ) +1etb=201+9)" —0(1+ 9" —2

d. En conclure que pour tout ¢t > 0,

M(t) = (1—(1+at)e™™) AP+ (2+at)e™ —2) A+ I3
puis préciser la loi de Xj.
PARTIE 4 - DEMONSTRATION DE L'EGALITE (**) ADMISE DANS LA PARTIE 2
On utilise les notations et définitions des deux premiéres parties.

e On définit pour A = (a; ;) appartenant a ., (R),

1<i,j<n

1<i<n

n
1Al = max | > lai,|
j=1

n
c’est-a-dire la plus grande valeur que prend ) |a; ;| lorsque 4 décrit {1,...,n}.
j=1

5. Les carrés peuvent ignorer cette question.
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e On admet que si (Ag),, est une suite de matrices appartenant a .#,(R) et A appartenant aussi a

Mp(R),A= lim Aj siet seulement si lim || A; — A = 0.
k—4o0 k—4o00

1 -1 1
12. Unexemple-SiA=1| 0 1 —1 |, montrer que ||A| =2.
-4 0 2

13. Soit ¢ > 0.
a. Etablir ||M(t)|| = 1.
b. En utilisant la question 2. de la partie I, montrer que pour k& € N* agsez grand,
14. Soient A = (a; ;) et B = (b; ;)

I+ LG| = 1.

deux matrices appartenant a ., (R).

I<i,j<n 1<i,5<n

a. Etablir que |4+ B|| < || Al + || B]|-

b. Montrer que [|A| < 327 D27 |ai -

Démontrer que, |AB|| < ||A]|||B|| puis que pour tout entier naturel n, ||A™| < [|A|™.
Vérifier que pour tout k € N*, A"l — Bk+l = 4 (Ak — B*) + (A — B)B*.

e. On pose ¢ = max(||4]|, | B||). Montrer, par récurrence sur k, que pour tout k € N*,

g o

HAk - BkH < kYA - B
15. Soit t un réel positif et £k € N*.
a. Justifier que HM (%) — (In + %G)H = o0 (%)

k——+o0

t t
<k|M (=)= (I +-

k

b. Montrer que pour tout k assez grand,

HONCEY)

¢. En conclure que M(t) = limy 400 (In + £G)
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